Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Clin Transl Med ; 14(4): e1661, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38644791

RESUMO

BACKGROUND: Spinal cord injury (SCI)-induced neuroinflammation and oxidative stress (OS) are crucial events causing neurological dysfunction. Aconitate decarboxylase 1 (ACOD1) and its metabolite itaconate (Ita) inhibit inflammation and OS by promoting alkylation of Keap1 to induce Nrf2 expression; however, it is unclear whether there is another pathway regulating their effects in inflammation-activated microglia after SCI. METHODS: Adult male C57BL/6 ACOD1-/- mice and their wild-type (WT) littermates were subjected to a moderate thoracic spinal cord contusion. The degree of neuroinflammation and OS in the injured spinal cord were assessed using qPCR, western blot, flow cytometry, immunofluorescence, and trans-well assay. We then employed immunoprecipitation-western blot, chromatin immunoprecipitation (ChIP)-PCR, dual-luciferase assay, and immunofluorescence-confocal imaging to examine the molecular mechanisms of ACOD1. Finally, the locomotor function was evaluated with the Basso Mouse Scale and footprint assay. RESULTS: Both in vitro and in vivo, microglia with transcriptional blockage of ACOD1 exhibited more severe levels of neuroinflammation and OS, in which the expression of p62/Keap1/Nrf2 was down-regulated. Furthermore, silencing ACOD1 exacerbated neurological dysfunction in SCI mice. Administration of exogenous Ita or 4-octyl itaconate reduced p62 phosphorylation. Besides, ACOD1 was capable of interacting with phosphorylated p62 to enhance Nrf2 activation, which in turn further promoted transcription of ACOD1. CONCLUSIONS: Here, we identified an unreported ACOD1-p62-Nrf2-ACOD1 feedback loop exerting anti-inflammatory and anti-OS in inflammatory microglia, and demonstrated the neuroprotective role of ACOD1 after SCI, which was different from that of endogenous and exogenous Ita. The present study extends the functions of ACOD1 and uncovers marked property differences between endogenous and exogenous Ita. KEY POINTS: ACOD1 attenuated neuroinflammation and oxidative stress after spinal cord injury. ACOD1, not itaconate, interacted with p-p62 to facilitate Nrf2 expression and nuclear translocation. Nrf2 was capable of promoting ACOD1 transcription in microglia.


Assuntos
Carboxiliases , Hidroliases , Camundongos Endogâmicos C57BL , Microglia , Fator 2 Relacionado a NF-E2 , Traumatismos da Medula Espinal , Succinatos , Animais , Fator 2 Relacionado a NF-E2/metabolismo , Traumatismos da Medula Espinal/tratamento farmacológico , Traumatismos da Medula Espinal/metabolismo , Traumatismos da Medula Espinal/complicações , Camundongos , Microglia/metabolismo , Microglia/efeitos dos fármacos , Masculino , Carboxiliases/metabolismo , Carboxiliases/genética , Succinatos/farmacologia , Succinatos/metabolismo , Modelos Animais de Doenças , Proteína Sequestossoma-1/metabolismo
2.
Heliyon ; 10(5): e27218, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38449642

RESUMO

One of the malignant tumors with a high occurrence rate worldwide is gastric carcinoma, which is an epithelial malignant tumor emerging from the stomach. Natural product polysaccharides are a kind of natural macromolecular polymers, which have the functions of regulating immunity, anti-oxidation, anti-fatigue, hypoglycemia, etc. Natural polysaccharides have remarkable effectiveness in preventing the onset, according to studies, and development of gastric cancer at both cellular and animal levels. This paper summarizes the inhibitory mechanisms and therapeutic significance of plant polysaccharides, fungi polysaccharides, and algal polysaccharides in natural product polysaccharides on the occurrence and development of gastric cancer in recent years, providing a theoretical basis for the research, development, and medicinal value of polysaccharides.

3.
J Transl Med ; 22(1): 304, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38528569

RESUMO

BACKGROUND: The treatment of spinal cord injury (SCI) has always been a significant research focus of clinical neuroscience, with inhibition of microglia-mediated neuro-inflammation as well as oxidative stress key to successful SCI patient treatment. Caffeic acid phenethyl ester (CAPE), a compound extracted from propolis, has both anti-inflammatory and anti-oxidative effects, but its SCI therapeutic effects have rarely been reported. METHODS: We constructed a mouse spinal cord contusion model and administered CAPE intraperitoneally for 7 consecutive days after injury, and methylprednisolone (MP) was used as a positive control. Hematoxylin-eosin, Nissl, and Luxol Fast Blue staining were used to assess the effect of CAPE on the structures of nervous tissue after SCI. Basso Mouse Scale scores and footprint analysis were used to explore the effect of CAPE on the recovery of motor function by SCI mice. Western blot analysis and immunofluorescence staining assessed levels of inflammatory mediators and oxidative stress-related proteins both in vivo and in vitro after CAPE treatment. Further, reactive oxygen species (ROS) within the cytoplasm were detected using an ROS kit. Changes in mitochondrial membrane potential after CAPE treatment were detected with 5,5',6,6'-tetrachloro-1,1',3,3'-tetraethyl-imidacarbocyanine iodide. Mechanistically, western blot analysis and immunofluorescence staining were used to examine the effect of CAPE on the SIRT1/PGC1α/DRP1 signaling pathway. RESULTS: CAPE-treated SCI mice showed less neuronal tissue loss, more neuronal survival, and reduced demyelination. Interestingly, SCI mice treated with CAPE showed better recovery of motor function. CAPE treatment reduced the expression of inflammatory and oxidative mediators, including iNOS, COX-2, TNF-α, IL-1ß, 1L-6, NOX-2, and NOX-4, as well as the positive control MP both in vitro and in vivo. In addition, molecular docking experiments showed that CAPE had a high affinity for SIRT1, and that CAPE treatment significantly activated SIRT1 and PGC1α, with down-regulation of DRP1. Further, CAPE treatment significantly reduced the level of ROS in cellular cytoplasm and increased the mitochondrial membrane potential, which improved normal mitochondrial function. After administering the SIRT1 inhibitor nicotinamide, the effect of CAPE on neuro-inflammation and oxidative stress was reversed.On the contrary, SIRT1 agonist SRT2183 further enhanced the anti-inflammatory and antioxidant effects of CAPE, indicating that the anti-inflammatory and anti-oxidative stress effects of CAPE after SCI were dependent on SIRT1. CONCLUSION: CAPE inhibits microglia-mediated neuro-inflammation and oxidative stress and supports mitochondrial function by regulating the SIRT1/PGC1α/DRP1 signaling pathway after SCI. These effects demonstrate that CAPE reduces nerve tissue damage. Therefore, CAPE is a potential drug for the treatment of SCI through production of anti-inflammatory and anti-oxidative stress effects.


Assuntos
Ácidos Cafeicos , Doenças Mitocondriais , Álcool Feniletílico , Traumatismos da Medula Espinal , Animais , Camundongos , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Anti-Inflamatórios/metabolismo , Ácidos Cafeicos/farmacologia , Ácidos Cafeicos/uso terapêutico , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Metilprednisolona/farmacologia , Doenças Mitocondriais/tratamento farmacológico , Doenças Mitocondriais/metabolismo , Simulação de Acoplamento Molecular , Estresse Oxidativo/efeitos dos fármacos , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Álcool Feniletílico/análogos & derivados , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais , Sirtuína 1/metabolismo , Medula Espinal , Traumatismos da Medula Espinal/tratamento farmacológico , Dinaminas/efeitos dos fármacos
4.
Int J Biol Macromol ; 266(Pt 1): 131261, 2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38556231

RESUMO

Polysaccharides impact intestinal fermentation and regulate interfacial properties which affect absorption and transportation. Short-chain fatty acids (SCFAs), the main metabolites of soy hull polysaccharide lysate, are readily absorbed by the body and perform various physiological functions. We analysed the interfacial properties and transport of soy hull polysaccharide-derived SCFAs in the Caco-2 cell model to clarify the transmembrane transport mechanism. The results showed that the interfacial properties of the co-culture system were influenced by both transit time and concentration of SCFAs, the uptake and transit rates of SCFAs at 1-3 h increased significantly with time (P < 0.05). With increasing transit time and concentration, the transit rates of SCFAs on the apical side (AP) â†’ basolateral side (BL) and BL â†’ AP sides increased and then stabilised, the transit rate of the AP â†’ BL side was higher than that of the BL â†’ AP side. Proteomic analysis showed that soy hull polysaccharide-derived SCFAs resulted in the differential expression of 285 upregulated and 501 downregulated after translocation across Caco-2 cells. The differentially expressed proteins were mainly enriched in ribosomes, oxidative phosphorylation, nuclear transport, and SNARE vesicular transport. This study lays the theoretical foundation for understanding the structure-activity relationship of soy hull polysaccharides in the intestine.

5.
Mol Neurobiol ; 2023 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-37995078

RESUMO

Ferroptosis is a type of iron-dependent programmed cell death caused by the imbalance between oxidants and antioxidants. A disintegrin and metalloproteinase-8 (ADAM8) is a metalloproteinase that mediates cell adhesion, cell migration, and proteolytic activity. However, the molecular mechanism of ADAM8 regulating ferroptosis after neural disorder is unclear, especially in the neuron. In the present study, we identified the protective role of ADAM8 in Erastin-induced ferroptosis in vitro of the HT22 cells. It was found that overexpression of ADAM8 resulted in upregulated expression of GPX4 and FTH1 along with the decreased reactive oxygen species (ROS) production and reduced neuronal death; however, knockdown of ADAM8 resulted in an opposite. Mechanically, using the Nrf2 activator NK-252 and inhibitor nrf2-IN-1, we dmonstrated that ADAM8 regulates Erastin-mediated neuronal ferroptosis via activating the Nrf2/HO-1/FTH1 signaling pathway. In conclusion, the current study suggested that ADAM8 inhibited Erastin-induced neuronal ferroptosis through activating the Nrf2/HO-1/FTH1 signaling pathway, playing a protective role in vitro of the HT22 cell line. ADAM8 may be a promising and feasible target for neuronal survival in diseases of neural disorder.

6.
Cell Mol Biol (Noisy-le-grand) ; 69(11): 25-29, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-38015546

RESUMO

Denervated muscle atrophy is a severe neurological complication that significantly impacts patients' quality of life. Currently, there is a lack of effective treatment methods. This study aims to investigate the molecular mechanisms associated with denervated muscle atrophy and explore potential therapeutic targets. In this study, we assessed the severity of denervated muscle atrophy by measuring the wet-weight ratio of the calf muscles. We conducted Western blot and immunofluorescence experiments to observe the morphology and cross-sectional area of muscle fibers following sciatic nerve transection. Simultaneously, we evaluated the expression of Camk2a in muscle tissue and measured changes in Ca2+ using the BCA method. Additionally, we performed HE and Sirius Red staining on denervated muscle tissue to observe the cross-sectional area of muscle fibers and collagen deposition in response to Camk2a overexpression. In our study, We observed a significant decrease in the wet weight ratio of the muscles, myosin, and muscle fiber cross-sectional area with the prolonged duration of sciatic nerve transection. Subsequently, we observed varying degrees of elevation in Ca2+ levels in denervated muscle tissue, while Camk2a, which regulates Ca2+ signal transduction, significantly decreased in denervated muscle tissue. Overexpression of Camk2a reduced the accumulation of Ca2+ in muscle tissue, resulting in higher muscle wet weight ratios, larger muscle fiber cross-sectional areas, and a significant reduction in collagen deposition in muscle tissue. In conclusion, our study provides the first evidence that Camk2a can alleviate calcium overload in muscle cells and ameliorate denervated muscle atrophy. Our findings suggest that Camk2a may serve as a crucial regulatory target in denervated muscle atrophy.


Assuntos
Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina , Cálcio , Atrofia Muscular , Humanos , Colágeno , Homeostase , Fibras Musculares Esqueléticas , Proteínas Serina-Treonina Quinases , Qualidade de Vida , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo
7.
Int J Biol Macromol ; 245: 125206, 2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37295695

RESUMO

The stable energy barrier of mucin and soy hull polysaccharide (SHP) is established at the air/water interface in the intestinal fluid and is conducive to the absorption and transportation of nutrients. This study aimed to investigate the effect of different concentrations (0.5 % and 1.5 %) of Na+ and K+ on the energy barrier through the digestive system model in vitro. The interaction between ions and microwave-assisted ammonium oxalate-extracted SP (MASP)/mucus was characterized by particle size, zeta potential, interfacial tension, surface hydrophobicity, Fourier transform infrared spectroscopy, endogenous fluorescence spectroscopy, microstructure, and shear rheology. The results showed that the interactions between ions and MASP/mucus included electrostatic interaction, hydrophobic interaction, and hydrogen bond. The MASP/mucus miscible system was destabilized after 12 h, and the ions could improve the system stability to some extent. MASP aggregated continuously with the increase in the ion concentration, and large MASP aggregates were trapped above the mucus layer. Furthermore, the adsorption of MASP/mucus at the interface increased and then decreased. These findings provided a theoretical basis for an in-depth understanding of the mechanism of action of MASP in the intestine.


Assuntos
Serina Proteases Associadas a Proteína de Ligação a Manose , Água , Água/química , Polissacarídeos/química , Intestinos , Muco
8.
Front Immunol ; 13: 993168, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36238284

RESUMO

Background: Neuroinflammation following spinal cord injury (SCI) results in prolonged neurological damage and locomotor dysfunction. Polarization of microglia is vital to regulation of neuroinflammation, although the underlying mechanisms have not yet been elucidated. Endocannabinoid receptor subtype 2 (CB2R) is reported to ameliorate neurodegeneration via immunomodulation activities. However, the underlying machinery in the context of SCI remains unclear. Methods: A lipopolysaccharide-induced microglia inflammation model and a mouse model of SCI were employed to investigate the regulatory role of CB2R in the polarization of microglia in response to excess neuroinflammation. Markers of inflammation and autophagy were measured by Western blot analysis, immunofluorescence, flow cytometry, and enzyme-linked immunosorbent assays. Histological staining with hematoxylin and eosin, Nissl, and Luxol® fast blue was conducted using commercial kits. The locomotor function of the hindlimbs of the experimental mice was evaluated with the Basso Mouse Scale, Louisville Swim Scale, and footprint assay. Results: The results showed that CB2R promoted M2 differentiation, increased interleukin (IL)-10 expression, and inhibited M1 differentiation with decreased expression of IL-1ß and IL-6. CB2R activation also increased ubiquitination of the NLRP3 inflammasome and interacted with the autophagy-related proteins p62 and microtubule-associated proteins 1B light chain 3. Treatment with the CB2R activator JWH-133 reduced loss of myelin, apoptosis of neurons, and glial scarring, leading to improved functional recovery of the hindlimbs, while the CB2R antagonist AM630 produced opposite results. Conclusion: Taken together, these results suggested that CB2R activation attenuated neuroinflammation targeting microglial polarization by promoting NLRP3 clearance, thereby facilitating functional recovery post-SCI.


Assuntos
Inflamassomos , Traumatismos da Medula Espinal , Animais , Autofagia , Proteínas Relacionadas à Autofagia , Endocanabinoides , Amarelo de Eosina-(YS) , Hematoxilina , Inflamassomos/metabolismo , Inflamação/metabolismo , Interleucina-6 , Lipopolissacarídeos , Camundongos , Proteínas Associadas aos Microtúbulos , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Doenças Neuroinflamatórias , Receptores de Canabinoides , Traumatismos da Medula Espinal/tratamento farmacológico , Traumatismos da Medula Espinal/patologia
9.
Neurosci Lett ; 791: 136914, 2022 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-36270452

RESUMO

The role of CD93 in inflammatory response has been reported in multiple previous studies. However, the underlying mechanism of CD93 in microglial activation and migration during neuroinflammation post spinal cord injury (SCI) remains elusive. In the current study, we performed western blot, qRT-PCR, immunofluorescence analyses Transwell assay, and ELISA to determine the expression change and in-depth molecular mechanism of CD93 in microglia post inflammatory initiation. We found that CD93 expression was increased in microglia after SCI in vivo or lipopolysaccharide (LPS) stimuli in vitro. Additionally, CD93 interacted with TAK1 to inhibit NF-κB activation, thus attenuating inflammation and migration of microglia after treatment with LPS. These findings indicate that CD93 might participate in microglia-induced neuroinflammation development post SCI, suggesting that CD93 is a promising target for neuroimmunological regulation.


Assuntos
NF-kappa B , Traumatismos da Medula Espinal , Humanos , Inflamação/metabolismo , Lipopolissacarídeos/farmacologia , Microglia/metabolismo , NF-kappa B/metabolismo , Transdução de Sinais , Traumatismos da Medula Espinal/metabolismo
10.
Updates Surg ; 74(5): 1637-1643, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35986864

RESUMO

The goal of this study was to determine whether C-reactive protein (CRP) levels and its ratios can be used as indicators to exclude postoperative anastomotic leak (AL) requiring intervention in patients undergoing elective laparoscopic total mesorectal excision (TME) without a diverting ileostomy for middle or low rectal cancer. We measured CRP values on postoperative days (POD) 1, 2, and 4 and CRP ratios between two PODs in 1278 consecutive patients undergoing rectal surgery. The incidence of AL requiring intervention was 5.9%, and 92% of AL occurred by POD 4. The CRP levels on POD 4 had a maximal area under the curve (AUC) of 0.956 with a negative predictive value (NPV) of 99.7% when the cutoff was established as 80 mg/l. Also, the ratio between CRP levels on POD 4 and CRP levels on POD 2 (CRP POD 4/2) was the most accurate indicator among the CRP ratios, with an AUC of 0.959 and an NPV of 99.5% when the cutoff was set at one. CRP on POD 4 < 80 mg/l and the ratio of CRP POD 4/2 < 1 can be used to rule out AL requiring intervention in patients undergoing elective laparoscopic TME without a diverting ileostomy for middle or low rectal cancer.


Assuntos
Laparoscopia , Neoplasias Retais , Fístula Anastomótica/diagnóstico , Fístula Anastomótica/etiologia , Proteína C-Reativa/análise , Humanos , Laparoscopia/efeitos adversos , Neoplasias Retais/cirurgia , Reto
11.
J Biol Chem ; 298(9): 102340, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35931120

RESUMO

Epidermal growth factor (EGF) is one of the most well-characterized growth factors and plays a crucial role in cell proliferation and differentiation. Its receptor EGFR has been extensively explored as a therapeutic target against multiple types of cancers, such as lung cancer and glioblastoma. Recent studies have established a connection between deregulated EGF signaling and metabolic reprogramming, especially rewiring in aerobic glycolysis, which is also known as the Warburg effect and recognized as a hallmark in cancer. Pyruvate kinase M2 (PKM2) is a rate-limiting enzyme controlling the final step of glycolysis and serves as a major regulator of the Warburg effect. We previously showed that PKM2 T405/S406 O-GlcNAcylation, a critical mark important for PKM2 detetramerization and activity, was markedly upregulated by EGF. However, the mechanism by which EGF regulates PKM2 O-GlcNAcylation still remains uncharacterized. Here, we demonstrated that EGF promoted O-GlcNAc transferase (OGT) binding to PKM2 by stimulating OGT Y976 phosphorylation. As a consequence, we found PKM2 O-GlcNAcylation and detetramerization were upregulated, leading to a significant decrease in PKM2 activity. Moreover, distinct from PKM2, we observed that the association of additional phosphotyrosine-binding proteins with OGT was also enhanced when Y976 was phosphorylated. These proteins included STAT1, STAT3, STAT5, PKCδ, and p85, which are reported to be O-GlcNAcylated. Together, we show EGF-dependent Y976 phosphorylation is critical for OGT-PKM2 interaction and propose that this posttranslational modification might be important for substrate selection by OGT.


Assuntos
Fator de Crescimento Epidérmico , N-Acetilglucosaminiltransferases , Piruvato Quinase , Tirosina , Fator de Crescimento Epidérmico/metabolismo , Receptores ErbB/genética , Receptores ErbB/metabolismo , Humanos , N-Acetilglucosaminiltransferases/genética , N-Acetilglucosaminiltransferases/metabolismo , Neoplasias/metabolismo , Fosforilação , Fosfotirosina/metabolismo , Piruvato Quinase/metabolismo , Fator de Transcrição STAT5/metabolismo , Tirosina/metabolismo
12.
Int Immunopharmacol ; 111: 109120, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35944463

RESUMO

BACKGROUND: Spinal cord injury (SCI) is a ruinous neurological pathology that results in locomotor and sensory impairment. Neuro-inflammation and secondary neuronal apoptosis contribute to SCI, with anti-inflammatory therapies the focus of many SCI studies. Forsythoside B (FTS•B), a phenylethanoid glycoside extracted from the leaves of Lamiophlomis rotata Kudo, has been shown previously to have anti-inflammatory properties. Nevertheless, the therapeutic effect of FTS•B on neuro-inflammation after SCI is unknown. METHODS: Neuro-inflammation was assessed by western blotting (WB), immunofluorescence (IF) staining, and enzyme-linked immunosorbent assay (ELISA) both in vitro and in vivo. Secondary neuronal apoptosis was simulated in a microglia-neuron co-culture model with the degree of apoptosis measured by WB, IF, and TUNEL staining. In vivo, FTS•B (10 mg/kg, 40 mg/kg) were intraperitoneally injected into SCI mice. Morphological changes following SCI were evaluated by Nissl, Hematoxylin-eosin, and Luxol Fast Blue staining. Basso Mouse Scale scores were used to evaluate locomotor function recovery. RESULTS: FTS•B markedly decreased the levels of iNOS, COX-2 and signature mediators of inflammation. Phosphorylated p38 and nuclear factor-kappa B (NF-κB) were markedly decreased by FTS•B. Additionally, FTS•B-induced inhibition of NF-κB and p38-MAPK signaling pathways was reversed by Nrf2 downregulation. Administration of FTS•B also significantly reduced apoptosis-related protein levels indicating that FTS•B ameliorated secondary neuronal apoptosis. FTS•B administration inhibited glial scar formation, decreased neuronal death, tissue deficiency, alleviated demyelination, and promoted locomotor recovery. CONCLUSION: FTS•B effectively attenuates neuro-inflammation and secondary neuronal apoptosis by inhibition of NF-κB and p38-MAPK signaling pathways through activating Nrf2 after SCI. This study demonstrates FTS•B to be a potential therapeutic for SCI.


Assuntos
Anti-Inflamatórios , Ácidos Cafeicos , Glucosídeos , NF-kappa B , Traumatismos da Medula Espinal , Animais , Anti-Inflamatórios/uso terapêutico , Apoptose , Ácidos Cafeicos/uso terapêutico , Glucosídeos/uso terapêutico , Inflamação/tratamento farmacológico , Sistema de Sinalização das MAP Quinases , Camundongos , Fator 2 Relacionado a NF-E2/metabolismo , NF-kappa B/metabolismo , Medula Espinal , Traumatismos da Medula Espinal/complicações , Traumatismos da Medula Espinal/tratamento farmacológico
13.
Front Aging Neurosci ; 14: 905115, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35860670

RESUMO

Background: Spinal cord injury (SCI) is a severe traumatic disorder of the central nervous system (CNS) that causes irreversible damage to the nervous tissue. The consequent hemorrhage contributed by trauma induces neuronal ferroptosis post SCI, which is an important death mode to mediate neuronal loss. Growth differentiation factor 15 (GDF15) is a cytokine that regulates cell proliferation, differentiation, and death. However, the specific role of GDF15 in neuronal ferroptosis post SCI remains unknown. Materials and Methods: Neuronal ferroptosis in vitro was measured by detection of lipid peroxidation, glutathione, iron content, and reactive oxidative stress. In vivo, western blotting and immunofluorescence (IF) staining was utilized to measure ferroptosis post SCI. IF staining, TUNEL staining, hematoxylin-eosin staining, and Nissl staining were used to measure neurological damage. Finally, locomotor function recovery was analyzed using the Basso Mouse Scale and Louisville Swim Scale. Results: GDF15 was significantly increased in neuronal ferroptosis and silencing GDF15 aggravated ferroptosis both in vitro and in vivo. Besides, GDF15-mediated inhibition of neuronal ferroptosis is through p62-dependent Keap1-Nrf2 pathway. In SCI mice, knockdown of GDF15 significantly exacerbated neuronal death, interfered with axon regeneration and remyelination, aggravated ferroptosis-mediated neuroinflammation, and restrained locomotor recovery. Conclusion: GDF15 effectively alleviated neuronal ferroptosis post SCI via the p62-Keap1-Nrf2 signaling pathway and promoted locomotor recovery of SCI mice, which is suggested as a potential target on SCI pathogenesis and treatment.

14.
Cell Biosci ; 12(1): 82, 2022 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-35659106

RESUMO

BACKGROUND: Traumatic spinal cord injury (SCI)-induced neuroinflammation results in secondary neurological destruction and functional disorder. Previous findings showed that microglial pyroptosis plays a crucial role in neuroinflammation. Thus, it is necessary to conduct a comprehensive investigation of the mechanisms associated with post-SCI microglial pyroptosis. The Fanconi Anemia Group C complementation group gene (FANCC) has been previously reported to have an anti-inflammation effect; however, whether it can regulate microglial pyroptosis remains unknown. Therefore, we probed the mechanism associated with FANCC-mediated microglial pyroptosis and neuroinflammation in vitro and in vivo in SCI mice. METHODS: Microglial pyroptosis was assessed by western blotting (WB) and immunofluorescence (IF), whereas microglial-induced neuroinflammation was evaluated by WB, Enzyme-linked immunosorbent assays and IF. Besides, flow cytometry, TdT-mediated dUTP Nick-End Labeling staining and WB were employed to examine the level of neuronal apoptosis. Morphological changes in neurons were assessed by hematoxylin-eosin and Luxol Fast Blue staining. Finally, locomotor function rehabilitation was analyzed using the Basso Mouse Scale and Louisville Swim Scale. RESULTS: Overexpression of FANCC suppressed microglial pyroptosis via inhibiting p38/NLRP3 expression, which in turn reduced neuronal apoptosis. By contrast, knockdown of FANCC increased the degree of neuronal apoptosis by aggravating microglial pyroptosis. Besides, increased glial scar formation, severe myelin sheath destruction and poor axon outgrowth were observed in the mice transfected with short hairpin RNA of FANCC post SCI, which caused reduced locomotor function recovery. CONCLUSIONS: Taken together, a previously unknown role of FANCC was identified in SCI, where its deficiency led to microglia pyroptosis, neuronal apoptosis and neurological damage. Mechanistically, FANCC mediated microglia pyroptosis and the inflammatory response via regulating the p38/NLRP3 pathway.

15.
Biomater Sci ; 10(15): 4184-4192, 2022 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-35727040

RESUMO

Nanoparticle-induced ferroptosis has been proven to be an appealing strategy in cancer treatment. Previously, we reported the synthesis of an amphiphilic polymer prodrug of SO2, mPEG-PLG(DNs), which could self-assemble to formulate nanoparticles (NP-DNs) and trigger cancer cell death by GSH consumption and SO2 release. In the current study, the potential mechanism of NP-DNs-induced cell death was further investigated. We demonstrated that NP-DNs exhibited efficient antitumor activity against gastric cancer via ferroptosis. NP-DNs could selectively accelerate lipid peroxidation through GSH depletion and SO2 generation in gastric cancer cells. In addition, the NP-DNs-induced GPX4 reduction played a collaborative role in ferroptosis. Concurrently, in vivo evaluations revealed that NP-DNs not only exhibited excellent antitumor efficiency via ferroptosis but also caused little systemic toxicity in mice. All the results showed that NP-DNs would be a promising prodrug in precision-targeted ferroptosis therapy.


Assuntos
Ferroptose , Pró-Fármacos , Neoplasias Gástricas , Animais , Glutationa/metabolismo , Camundongos , Polímeros , Pró-Fármacos/farmacologia , Pró-Fármacos/uso terapêutico , Neoplasias Gástricas/tratamento farmacológico , Dióxido de Enxofre
16.
Int J Biol Sci ; 18(4): 1347-1362, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35280679

RESUMO

Rationale: Epidural fibrosis is one of the contributors to failed back surgery syndrome (FBSS) with a high incidence of about 80,000 cases per year. The fibrosis spreads from the operative region to the dura mater or the nerve root and results in functional incapacity and pain after laminectomy. Our previous study showed that down-regulation of lncRNA-COX2 is involved in the epidural scar formation. However, it remains unknown whether lncRNA-COX2 participate in the fibroblast activation and epidural fibrogenesis. Methods: LncRNA-COX2 and EGR1 expression were assessed by qRT-PCR and western blotting. Fibroblasts differentiation, proliferation and migration was determined by Collagen I/ɑ-SMA, 5-ethynyl-2'-deoxyuridine (EdU) and Transwell Assay respectively. Luciferase reporter assay was performed for the verification of target of LncRNA-COX2. Laminectomy was performed to establish the model of epidural fibrosis in mice. Epidural scar was evaluated by hematoxylin and eosin (HE) staining and Masson Trichrome staining. Results: Based on the result of transcriptome profiling, we found LncRNA-COX2 was significantly decreased in epidural tissues after laminectomy and in activated fibrotic fibroblasts. In vitro, overexpression of LncRNA-COX2 suppressed epidural fibrogenesis by inhibiting fibroblasts differentiation, proliferation and migration. Mechanistically, LncRNA-COX2 functioned as competing endogenous RNA (ceRNA) of EGR1. Gain of LncRNA-COX2 significantly decreased the expression of EGR1 and showed anti-fibrotic effect while EGR1 was markedly increased after loss of LncRNA-COX2. In vivo, LncRNA-COX2 attenuated laminectomy-induced epidural fibrosis in mice. Conclusion: In summary, the results demonstrated that LncRNA-COX2 showed anti-fibrotic effect by targeting EGR1 and identified LncRNA-COX2 as therapeutic molecule for preventing aberrant epidural fibrosis.


Assuntos
RNA Longo não Codificante , Animais , Cicatriz/metabolismo , Ciclo-Oxigenase 2/metabolismo , Proteína 1 de Resposta de Crescimento Precoce/genética , Proteína 1 de Resposta de Crescimento Precoce/metabolismo , Proteína 1 de Resposta de Crescimento Precoce/farmacologia , Fibroblastos/metabolismo , Fibrose , Camundongos , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Ratos , Ratos Sprague-Dawley
17.
Int J Biol Sci ; 18(4): 1328-1346, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35280691

RESUMO

Rationale: The neuroinflammation is necessary for glial group initiation and clearance of damaged cell debris after nerve injury. However, the proinflammatory polarization of excessive microglia amplifies secondary injury via enhancing cross-talk with astrocytes and exacerbating neurological destruction after spinal cord injury (SCI). The glucagon-like peptide-1 receptor (GLP-1R) agonist has been previously shown to have a neuroprotective effect in neurodegeneration, whereas its potency in microglial inflammation after SCI is still unknown. Methods: The effect and mechanism of GLP-1R activation by exendin-4 (Ex-4) were investigated in in vitro cultured glial groups and in vivo in SCI mice. Alterations in the gene expression after GLP-1R activation in inflammatory microglia were measured using mRNA sequencing. The microglial polarization, neuroinflammatory level, and astrocyte reaction were detected by using western blotting, flow cytometry, and immunofluorescence. The recoveries of neurological histology and function were also observed using imaging and ethological examinations. Results: GLP-1R activation attenuated microglia-induced neuroinflammation by reversing M1 subtypes to M2 subtypes in vitro and in vivo. In addition, activation of GLP-1R in microglia blocked production of reactive astrocytes. We also found less neuroinflammation, reactive astrocytes, corrected myelin integrity, ameliorated histology, and improved locomotor function in SCI mice treated with Ex-4. Mechanistically, we found that Ex-4 rescued the RNA expression of Arf and Rho GAP adapter protein 3 (ARAP3). Knockdown of ARAP3 in microglia reversed activation of RhoA and the pharmacological effect of Ex-4 on anti-inflammation in vitro. Conclusion: Ex-4 exhibited a previously unidentified role in reducing reactive astrocyte activation by mediation of the PI3K/ARAP3/RhoA signaling pathway, by neuroinflammation targeting microglia, and exerted a neuroprotective effect post-SCI, implying that activation of GLP-1R in microglia was a therapeutical option for treatment of neurological injury.


Assuntos
Fármacos Neuroprotetores , Traumatismos da Medula Espinal , Animais , Cicatriz/metabolismo , Exenatida/metabolismo , Exenatida/farmacologia , Exenatida/uso terapêutico , Receptor do Peptídeo Semelhante ao Glucagon 1/metabolismo , Camundongos , Microglia , Doenças Neuroinflamatórias , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Traumatismos da Medula Espinal/metabolismo
18.
Cell Death Discov ; 7(1): 96, 2021 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-33966042

RESUMO

Microglia activation post traumatic spinal cord injury (SCI) provokes accumulation of inflammatory metabolites, leading to increasing neurological disruption. Our previous studies demonstrated that blocking MAPKs pathway mitigated microglia inflammatory activation and prevented cords from neuroinflammation-induced secondary injury. Transforming growth factor-ß-activated kinase 1 (TAK1) is an upstream gate regulating activation of MAPKs signaling. To validate the therapeutic effect of TAK1 inhibition in neuroinflammation post SCI, in the current study, cultures of microglia BV2 line was undergone lipopolysaccharide (LPS) stimulation in the presence of TAK1 inhibitor 5Z-7-Oxozeaenol (ZO), LPS, or control. LPS triggered inflammatory level, cell migration, and matrix metalloproteinase (MMP) 2/9 production, which was reduced in ZO-treated cultures. TAK1 inhibition by ZO also decreased activation of MAPKs pathway, indicating that ZO-mediated alleviation of neuroinflammation is likely modulated via TAK1/MAPKs axis. In vivo, neuroinflammatory level and tissue destruction were assessed in adult male mice that were undergone SCI by mechanical trauma, and treated with ZO by intraperitoneal injection. Compared with SCI mice, ZO-treated mice exhibited less microglia pro-inflammatory activation and accumulation adjacent to injured core linked to reduced MMP2/9 expression, leading to minor tissue damage and better locomotor recovery. To sum up, the obtained data proved that in the early phase post SCI, TAK1 inhibition impedes microglia biological activities including activation, enzymatic synthesis, and migration via downregulation of MAPKs pathway, and the effects may be accurately characterized as potent anti-inflammation.

19.
Chin J Cancer Res ; 32(2): 252-262, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32410802

RESUMO

Studies on morbid obesity have shown remarkable improvement of diabetes in patients who have undergone bariatric operations. It was subsequently shown that these operations induce diabetes remission independent of the resultant weight loss; as a result, surgeons began to investigate whether operations for gastric cancer (GC) could have the same beneficial effect on diabetes as bariatric operations. It was then shown in multiple reports that followed that certain operations for GC were able to improve or even cure type 2 diabetes mellitus (T2DM) in GC patients. This finding gave rise to the concept of "oncometabolic surgery", in which a patient diagnosed with both GC and T2DM undergo a single operation with the purpose of treating both diseases. With the increasing incidence of T2DM, oncometabolic surgery has the potential to improve the quality of life and even extend survival of many GC patients. However, because the GC patient population and the bariatric patient population are wildly different and because different GC operations have different properties, the effect of oncometabolic surgery must be carefully assessed and engineered in order to maximize benefit and avoid harm. This manuscript aims to summarize the findings made so far in the field of oncometabolic surgery and to provide an outlook regarding the possibility of oncometabolic surgery being incorporated into standard clinical practice.

20.
J Minim Access Surg ; 16(1): 18-23, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-30416138

RESUMO

OBJECTIVE: Totally laparoscopic distal gastrectomy (TLDG) with intracorporeal anastomosis is feasible because of improved approaches to laparoscopic surgery and the availability of a variety of surgical instruments. This study was designed to evaluate the practicality, safety and short-term operative outcomes of intracorporeal gastroduodenostomy in TLDG for gastric cancer. MATERIALS AND METHODS: Medical records of patients with primary distal gastric cancer undergoing Billroth I (B-I) (n = 37) or B-II anastomosis (n = 41) in TLDG from February 2010 to November 2015 were retrospectively analysed. Perioperative data including the extent of lymph node dissection, number of stapler cartridges used, time required to create the anastomosis, operative time, estimated blood loss, proximal and distal margin length, and number of lymph nodes harvested were collected. Short-term post-operative outcomes evaluated during the initial 30 days after surgery included time to first flatus and earliest liquid consumption, length of post-operative hospital stay and incidence of post-operative complications. RESULTS: B-I anastomosis was mainly applied to patients with carcinoma in the lower third of the gastric body (B-I, 81.08% vs. B-II, 31.71%;P < 0.001). Mean operating (B-I, 153.57 ± 18.25 min vs. B-II, 120.17 ± 11.74 min;P = 0.004) and anastomosis (B-I, 31.92 ± 6.10 min vs. B-II, 25.29 ± 3.84 min;P = 0.01) times were significantly longer for B-I anastomosis compared to B-II anastomosis. There were no significant differences in the number of stapler cartridges used, estimated blood loss, time to first flatus and liquid consumption, length of hospital stay or incidence of complications between these groups. CONCLUSIONS: TLDG with B-I or B-II anastomosis is safe and feasible for gastric cancer. B-II anastomosis may require less time than B-I anastomosis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...